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ABSTRACT

A rendering regression is a bug introduced by a web browser where

a web page no longer functions as users expect. Such rendering

bugs critically harm the usability of web browsers as well as web

applications. The unique aspect of rendering bugs is that they affect

the presented visual appearance of web pages, but those web pages

have no pre-defined correct appearance. Therefore, it is challenging

to automatically detect errors in their appearance. In practice, web

browser vendors rely on non-trivial and time-prohibitive manual

analysis to detect and handle rendering regressions.

This paper proposes R2Z2, an automated tool to find render-

ing regressions. R2Z2 uses the differential fuzz testing approach,

which repeatedly compares the rendering results of two different

versions of a browser while providing the same HTML as input.

If the rendering results are different, R2Z2 further performs cross

browser compatibility testing to check if the rendering difference

is indeed a rendering regression. After identifying a rendering re-

gression, R2Z2 will perform an in-depth analysis to aid in fixing

the regression. Specifically, R2Z2 performs a delta-debugging-like

analysis to pinpoint the exact browser source code commit causing

the regression, as well as inspecting the rendering pipeline stages

to pinpoint which pipeline stage is responsible. We implemented a

prototype of R2Z2 particularly targeting the Chrome browser. So

far, R2Z2 found 11 previously undiscovered rendering regressions

in Chrome, all of which were confirmed by the Chrome developers.

Importantly, in each case, R2Z2 correctly reported the culprit com-

mit. Moreover, R2Z2 correctly pin-pointed the culprit rendering

pipeline stage in all but one case.
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1 INTRODUCTION

A rendering regression is a bug introduced by a web browser

where a web page’s visual appearance no longer matches what

users expect. Rendering regressions impact the usability of web

browsers, the revenue of websites, as well as long-term trust in

web browsers. As an example, a major cloud computing platform,

ServiceNow, suffered a service outage due to a rendering regres-

sion where Chrome 89 failed to paint parts of the web page [20].

According to the Chrome team’s bug tracker, 18,400 bugs were filed

against rendering-related components (i.e., DOM, Style, Layout,

and Paint) between 2016 and 2021 [4], highlighting the non-trivial

and prohibitive development costs to maintain correct rendering in

Chrome.

The unique aspect of rendering bugs1 is that they affect the

presented visual look of a web page which has no clear, formally-

defined notion of a bug decision boundary. In particular, we found

two key challenges related to rendering bugs. First, it is challenging

to identify rendering bugs because it is difficult to determine the

correctness of rendering results. The correctness of browser ren-

dering is mostly dictated by the complex HTML and CSS specifica-

tions, which are difficult to completely express into programmable,

software-friendly conditions for automated verification. Further-

more, specifications are incomplete and do not cover all aspects

of rendering (e.g., table width distribution is only partially spec-

ified [16]). Second, even after identifying a rendering bug, it is

challenging to analyze and fix it. Unlike memory corruption bugs,

rendering bugs do not raise an immediate violation, so they do

1In this paper, the word “bug” implies “regression bug” if not specifically mentioned.
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not leave a clue about which code is responsible for a bug. Worse

yet, for performance, rendering is processed through a multi-stage

pipeline, further complicating the bug analysis. We note that these

unique aspects and challenges are not present in common tradi-

tional bugs such as memory corruption bugs, which can be modeled

using a clear violation condition after defining a valid memory re-

gion [46, 53].

In this paper, we propose R2Z2, a differential fuzz testing tech-

nique to find rendering regressions in web browsers. In order to

address the aforementioned two challenges, R2Z2’s approaches can

be summarized into the following two features. First, R2Z2 features

a bug oracle along with rendering change detection. R2Z2 runs two

versions of a browser with a randomly generated HTML file, and

attempts to identify rendering image differences. In order to avoid

false positive bugs, R2Z2 developed a regression oracle, which is ca-

pable of determining if a given bug is indeed a rendering regression

bug or not. This regression oracle exploits two interesting charac-

teristics in web browsers—1) if multiple independently developed

browsers generate the same rendering results from the same HTML

input, it is likely that both produce the correct rendering; and 2)

browser developers add a testcase when there is a rendering feature

update, which can be used to validate the rendering correctness

with respect to the new feature.

Second, R2Z2 features two automated analyses, the bisect analy-

sis and the rendering pipeline analysis, which pinpoint the culprit

commit and pipeline stage responsible for the bug. As developers

are currently doing this manually, we believe R2Z2’s automated

analyses can significantly reduce engineering costs.

More specifically, R2Z2 designs four components, i) change de-

tector, ii) bisect analysis, iii) regression oracle, and iv) rendering

pipeline analysis. The change detector finds any HTML file where

rendering results are different across two different browser versions.

Then the bisect analysis finds the culprit browser commit which

first introduces the rendering difference. Once finding the culprit

browser commit, the regression oracle determines if the rendering

difference is truly due to a regression bug. Lastly, the rendering

pipeline analysis performs in-depth differential testing to pin-point

which pipeline stage is responsible for the regression.

We implemented R2Z2 and evaluated it with the popular web

browser, Chrome. In the course of our evaluation, R2Z2 identified

11 new rendering bugs, all of which are confirmed by the Chrome

developers. For those rendering bugs, R2Z2 correctly pinpointed the

culprit commit. R2Z2 also correctly pinpointed the culprit pipeline

stage in all cases except one, demonstrating its practical ability to

assist in the bug fix process as well.

The key point that R2Z2 exploits is that differential testing is

made possible by the existence of multiple independently devel-

oped implementations, and we can use that to bootstrap quality

in all web browser implementations. Hence, the general ideas and

lessons that we developed and learned from R2Z2 can further be

utilized for various suites of programs meeting this criterion in the

future. These programs include any set of multiple independent im-

plementations targeting the same standards, such as PDF viewers,

SVG engines, Java virtual machines, or SSL/TLS servers or clients.

To summarize, this paper makes the following contributions:

• Design. We designed R2Z2, a differential fuzz testing tool to

automatically detect browser rendering regression bugs. After

detecting rendering image differences, it features a bug oracle

to filter out false positive cases. R2Z2 also performs automated

analyses to spot a specific code commit and pipeline stage re-

sponsible for the bug, which can significantly reduce the entailed

engineering costs.

• Promising Results. While performing the evaluation, R2Z2

found 11 new rendering regressions in Chrome. All of these were

confirmed by the Chrome developers and six have already been

fixed. For all bugs, R2Z2 correctly spotted the culprit commit. For

all bugs except one, R2Z2 correctly spotted the culprit rendering

pipeline stage. These results suggest the strong practical aspects

of R2Z2 to detect and triage browser rendering bugs.

2 BACKGROUND

2.1 Fuzz Testing and Differential Testing

Fuzzing. Fuzzing is a popular bug finding technique. It repeatedly

generates random test cases to run against a target program and

monitors for erroneous behaviors such as crashing, hanging, or

memory access violations. From an engineering point of view, fuzz

testing does not require expert domain knowledge of a target pro-

gram, so it has been widely used in various software applications.

Most fuzzers are designed to find bugs where it is easy to ex-

press the buggy conditions (so called non-semantic bugs). This is

related to the fact that a fuzzer alone does not have the capability

to detect a bug—it has to observe a certain buggy condition during

the fuzzing. As such, most fuzzing techniques have been proposed

to find memory corruption bugs [2, 14, 27, 29, 30, 40, 54], which are

operated with the memory error detectors which clearly exhibit

buggy conditions (e.g., ASAN [53] and UBSAN [23]).

Differential Testing. Fuzz testing alone is not effective in finding

semantic bugs [45] because semantic bugs are difficult to express

as a bug condition and thus require domain knowledge to deter-

mine. In this regard, differential testing methods can be an effective

technique to find semantic bugs. Differential testing runs multiple

programs, all of which are supposed to produce the same output

for the same input. Differential testing then compares the outputs,

and if the output is different, it determines that the program likely

has a semantic bug. For instance, previous works leveraged differ-

ential testing to find semantic bugs in Java virtual machines (JVM),

SSL/TLS implementations, web browsers, graphic driver libraries,

and CPU RTLs [28, 31–34, 36, 39, 43, 51].

In fact, fuzz testing and differential testing can be employed

together if the input of the differential testing is provided through

the fuzzing procedure, which we refer to as differential fuzz testing

throughout this paper.

2.2 The Rendering Pipeline of a Web Browser

Rendering is the process of turning resources (e.g., HTML and CSS)

into pixels. Modern web browsers, including Chrome, Firefox, and

Safari, use roughly the same high-level steps [35, 38] which form

the rendering pipeline: 1) DOM, 2) Style, 3) Layout, 4) Paint.

DOM. The Document Object Model (DOM) is an in-memory tree

of nodes with the most common node types being element and

text. The DOM is initially constructed from an HTML file using a

well-defined parsing algorithm [17] and can later be modified using
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Figure 1: The high-level rendering pipeline of modern web browsers.

JavaScript APIs. For example, in the DOM tree construction shown

in Figure 1 (b), the element nodes are html, head, style, body, and

div, and there is a text node with the string hello world.

Style. Visual effects are applied to DOM nodes by the style step.

Cascading Style Sheets (CSS) defines style properties such as

font-size, background, and position. CSS also defines "selectors"

for mapping these properties to DOM nodes. The style step deter-

mines the CSS properties and values, together called the "computed

style", that apply to each DOM node. For example, as described

in Figure 1 (c), the div element has the CSS property background

with value #aaa.

Layout. Layout takes the DOM nodes with computed styles and

computes boxes with size and location. A box can be as simple as an

individual node in the DOM tree. Multiple boxes can be created for a

DOM node, such as one box for each line of text. CSS specifications

define when to create boxes, as well as how to calculate their size

and location. For example, as shown in Figure 1 (d), the hello world

text node produces one box for each line. The size of the text results

in the box for the parent div expanding to 706px tall.

Paint. Paint iterates the boxes from the layout step in back-to-

front order to produce low-level graphics instructions (i.e., paint

record). CSS specifications define the order [8]. For example, in

the case of the div, the rectangular background with color #aaa

would be painted before the text hello world. Then, pixels are

finally produced by rasterizing the paint records. Additionally, some

compositor-only CSS properties such as scrolling effects and 3D

transforms are applied at this step. "Threaded compositing", or

just "compositing", is the use of two techniques to improve the

efficiency of rasterization: threading and compositing. Threading is

the optimization of rasterizing on one or more additional threads.

Compositing is the optimization of caching portions of rasterized

output that change together. The portions of rasterized output from

paint records that change together are placed in the same layer. For

scrolling content, the rasterized pixels for an entire scrolling area

are cached in a texture, which avoids needing to rasterize on every

scroll.

2.3 Rendering Bugs

A rendering bug is a bug where the browser fails to render a given

page according to HTML and CSS specifications (if specified), or

how the user expects. Rendering bugs can manifest in many differ-

ent ways to users. For instance, if the layout stage has a bug, the

browser may incorrectly place an HTML element [18], harming the

1 <html>
2 <style>
3 .class7 {
4 backdrop-filter: hue-rotate(1deg);
5 filter: brightness(0.32269068);
6 padding: 66%;
7 }
8 </style>
9 <body>
10 THE EXAMPLE OF RENDERING BUG
11 <span class="class7" ></span>
12 </body>
13 </html>

(a) PoC HTML code

(b) Correct (Chrome 85)

(c) Incorrect (Chrome 86)

Figure 2: A rendering bug example (Chrome Issue #1122021).

(a) Correct (Chrome 79.0.3944) (b) Incorrect (Chrome 79.0.3945)

Figure 3: The rendering bug (Chrome Issue #1037830), which

was triggered on Apple’s homepage, https://support.apple.

com. The menu bar is disappeared on the right (highlighted

with the red box).

user experience by disrupting the web-page layout. Taking another

example, if the paint stage has a bug, visual effects on some content

may be incorrect [10].

We explain the example of a rendering bug through the HTML

code, as shown in Figure 2. In this example, CSS style filter is

applied to <span> element. Thus, the correct rendering is to paint

the <span> element with gray, which is rendered by Chrome 85.

However, Chrome 86 renders this incorrectly, painting the outside

of <span> element with gray as well. The root cause of this bug

is that Chrome 86 incorrectly includes the empty rectangles (i.e.,

width and height are zero) if their offsets are outside the frame, so

the area specified by <span> is over-extended.

If such a web page is used for commercial services, rendering

bugs can critically damage the reliability and fidelity of the page.

For instance, Figure 3 shows a case where a rendering bug made

the menu bar unusable on Apple’s homepage.
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3 CHALLENGES AND OUR APPROACH

This section first identifies challenges in identifying rendering re-

gressions in web browsers (§3.1). Then we shortly describe our

approach to address these challenges (§3.2).

3.1 Challenges of Rendering Bugs

In this subsection, we elaborate on two challenges in identifying

and analyzing rendering bugs.

Challenge#1: Identifying Rendering Bugs. In order to detect

the rendering bugs, one should be able to clearly determine the

correctness of the rendered result. However, it is challenging to

design such a rendering bug oracle. This is primarily because ren-

dering bugs are semantic bugs—the rendering bug involves se-

mantically incorrect rendering results which violate HTML and

CSS specifications where it is difficult to confirm semantic cor-

rectness/incorrectness through automated or programmatic tech-

niques. In other words, given an HTML and its rendered result, it

is challenging to develop systematic mechanisms or tools which

determine if the rendered result indeed follows the HTML and CSS

specifications [9, 13]. For this reason, in practice, rendering bugs

are confirmed through manual inspection by domain experts (i.e.,

browser developers).

There have been two general research directions to handle this

issue: i) formalized methods [44, 47, 48] and ii) differential test-

ing. Formalized methods attempt to statically verify if the browser

implementation of the browser follows HTML and CSS specifi-

cations. Using various static analysis techniques (such as formal

verification techniques or symbolic execution), this method can

completely inspect the correctness of an entire browser’s rendering

implementation. However, converting the HTML and CSS spec-

ifications to formalized rules is labor-intensive and error-prone,

demanding expert domain knowledge of specifications as well as

browser implementation.

Differential testing compares the result of two different browsers

to detect rendering bugs. It determines there is a rendering bug

when two browsers produce different results (e.g., two rendered

images) from the same HTML input. Unlike formalized methods,

this approach can be easily adapted to detect the rendering bugs

as it does not require domain knowledge and human efforts such

as writing formalized rules. In practice, however, the rendered

image generated from the same HTML can be quite different across

different browsers due to benign browser incompatibilities.

We observe two main factors behind benign browser incompati-

bilities. First, web browsers can have different development status

in supporting features, so a certain standard feature may or may

not be supported by each browser. As a result, rendering results for

such a partially supported feature are different across web browsers.

For instance, CSS contain: strict is supported by Chrome but not

Safari (illustrated in Figure 4). Thus, Chrome and Safari render the

HTML differently. Second, web browsers generate their own unique

rendering for features that are not specified by specifications (i.e.,

under-specified). For instance, the designs of <input type=file>

in Chrome and Firefox are different, introducing rendering results

differences (illustrated in Figure 5). Therefore, differential testing

alone can generate many false positives due to these benign browser

incompatibilities.

1 <style>
2 div {
3 contain: strict;
4 height: 0;
5 }
6 </style>
7 <div>invisible if
8 contain is supported
9 </div>

(a) Example code
(b) Chrome (c) Safari

Figure 4: Example of supported feature differences.

1 <html>
2 <head></head>
3 <body>
4 <input type="file">
5 </body>
6 </html>

(a) Example code (b) Chrome (c) Firefox

Figure 5: Example of benign design differences.

In short, both previous approaches suffer from high false posi-

tives. In practice, browser developers invest considerable manual

effort to identify rendering bugs. If any rendering issue is reported,

manual analysis is needed to confirm if a bug is present, imply-

ing that the complete automation of detecting rendering bugs is

challenging.

Challenge#2: Analyzing Rendering Bugs. We find that it is

difficult to analyze and fix rendering bugs due to the following two

main factors: 1) complex rendering pipeline; and 2) semantic bug.

In order to fix a rendering bug, it is essential to find out which stage

of the rendering pipeline and which part of code in the stage has a

bug.

However, as described in §2.2, the rendering pipeline of the

browser is long, and each stage of the pipeline has high complexity

as well as a dependency on the result of its previous stage (factor 1).

In addition, rendering bugs are semantic bugs so they do not gener-

ate a clear violation such as crash (factor 2). In the case of memory

corruption bugs, they display the violation so that the developers

can obtain clear violation contexts from the violation for debugging.

However, unlike the memory corruption bugs, it is challenging to

get clear violation contexts without any violation signal from a

rendering bug, so only rendered results may suggest the violation

context. In order to pin-point the true violation context, one may

need to manually trace back the complex implementation of the

rendering pipeline. In this respect, previous work only focused on

how to find the bug, not how to aid in fixing the bug. In practice,

browser developers rely on manual analysis to fix rendering bugs.

3.2 Our Approach

To address the challenges that we described in §3.1, we propose

two approaches.

Approach#1: Bug Oracle along with Change Detection. We

add the bug (pseudo) oracle capability (§4.3) along with the change

detection capability (§4.1). Previous work (on fuzzing or differential

testing) focuses on detecting changes. However, change detection

1821
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alone may generate false positives, as we mentioned in §3. In or-

der to solve this challenge, we propose the regression bug oracle

component, which can reduce the false positive issues.

The key idea of the regression oracle is to use cross-browser in-

teroperability to detect correctness. Cross-browser interoperability

is where different browsers (e.g., Chrome and Firefox) generate the

same rendered result from the same HTML file, because they follow

the same HTML and CSS specifications. Therefore, it is worth not-

ing that when two different browsers render the same HTML the

same, we can say both browsers properly render the HTML, and the

rendered result can be the reference result of the HTML file. In this

respect, we can use this reference result as an oracle to determine

whether a new browser version is correctly implemented. We will

explain the details of regression oracle in §4.3.

Approach#2: Automated Rendering Bug Analysis. We fol-

lowed the manual bug analysis process of browser teams and auto-

mated it. In the bug analysis process, we observed that the browser

team manually performed 1) version bisect, and 2) pipeline pin-

point analysis. The version bisect is to find out which commit

introduces a bug. The pipeline pin-point analysis is to find out

which stage of the rendering pipeline triggers a bug.

R2Z2 automates the version bisect through the bisect analy-

sis (§4.2) and the pipeline pin-point analysis through the bug ren-

dering pipeline analysis (§4.4). First, the key idea of bisect analysis

is to utilize the delta debugging technique along with change de-

tection. The intuition behind delta debugging is that the rendered

image should be significantly changed before and after the culprit

commit. In order to automatically pin-point the culprit commit, the

bisect analysis performs a binary search using the change detector.

Second, the key idea of the rendering pipeline analysis is to

utilize the cross-version differential testing to compare the results

of each pipeline stage in order. The intuitions here are 1) there

should be a culprit stage which introduces the rendering bug in

the rendering pipeline; and 2) the culprit stage is the stage that

generates the different results in two versions for the first time,

because each stage of rendering pipeline generates its output based

on the output of its previous stage. In this respect, the rendering

pipeline analysis sequentially compares the results of each stage

from two adjacent versions of the browser, which is obtained from

the bisect analysis. Then, if the results of a certain stage are different,

the analysis regards that stage as the culprit stage and terminates.

4 DESIGN

Now we describe the design of R2Z2. The overall workflow of R2Z2

is shown in Figure 6, which has four components operating in order:

1) change detector (§4.1), 2) bisect analysis (§4.2), 3) regression

oracle (§4.3), and 4) rendering pipeline analysis (§4.4).

The change detector in R2Z2 first generates an HTML file (which

we refer to as html). Then it opens html using two different versions

of the same browser, say A and B, and captures two rendered im-

ages ( 1 in Figure 6). Next, it checks whether two rendered results

are different. If different, R2Z2 minimizes html and determines that

html has a potential to be a rendering bug (which we call a candi-

date rendering bug, htmlCandBug) ( 2 ). The next is the bisect analysis,

which finds the culprit version (i.e., culprit commit), raising the first

Figure 6: The overall workflow of R2Z2.

rendering difference between A and B ( 3 ). We refer to the culprit

commit as B★ and the previous commit as A★.

This bisect analysis is essential for the next two components: the

regression oracle and the rendering pipeline analysis. The regres-

sion oracle identifies htmlOracleBug, which filters out benign issues

from htmlCandBug ( 4 ). R2Z2 performs rendering pipeline analysis

on the htmlOracleBug to identify which stage of rendering pipeline is

responsible for the regression bug ( 5 ). It compares each result of

four stages on two browsers A★ and B★, all of which are an internal

representation during the browser rendering pipeline procedure—

DOM tree, Style tree, Layout tree, and Paint output (i.e., Layers)

( 6 ). After this testing, R2Z2 can tell which state (as well as value)

introduced htmlOracleBug. We refer to the first difference-introducing

stage as a bug stage. Finally, R2Z2 generates a final bug report on

htmlOracleBug ( 7 ), which includes the following information: a min-

imized HTML file, the screenshots of A★ and B★, the culprit commit,

and the pipeline stage and details of the bug.

4.1 Change Detector

The change detector leverages cross-version differential testing

to detect rendering changes between two major browser versions

(e.g., Chrome v91 and Chrome v92) on a given html. As described

in §3.1, a rendering difference is required for a rendering bug, but

a difference alone is not sufficient to determine a bug is present.

One example of a benign difference is the implementation of a new

feature which is expected to have a rendering change. Therefore, the

change detector identifies a candidate bug (i.e., htmlCandBug) which

is used by later stages to determine true bugs (i.e., htmlOracleBug).

We chose pHash to detect the rendering difference. pHash is a well

known perceptual hashing algorithm, producing representative

fingerprint of a given image using a graphical algorithm [3, 52,

56]. pHash computes the hash value based on the low frequency

components of image. After completing the hash computation, each

pixel in a low frequency filtered image is converted to 1 (or 0) if its

value is higher (or lower) than the median value of all the pixels. We

note that it is possible to use other image comparison algorithms

instead of using pHash.

After obtaining individual pHash values from two rendered im-

ages, we measure the distance between two images by computing

the hamming distance between two hash values, which we refer

to as |PA − PB | . Here, PA and PB denote pHash values of html on the

browser version A and B, respectively. It is worth noting that a pHash
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value is not a scalar value but a vectorized value, so we compute

|PA − PB | using the hamming distance for each element in the vec-

tor. The minimum value of |PA − PB | is zero which indicates that

two rendered images are visually identical. The maximum value of

|PA − PB | is the number of pHash bits (e.g., if the number of bits is 64,

the maximum hamming distance is also 64) which indicates that

two rendered images are significantly different. R2Z2’s decision

boundary on a candidate rendering bug is a configurable threshold

value, Thresh—i.e., if |PA − PB | is larger than Thresh , it determines the

given input html is htmlCandBug. In our preliminary experiments, we

tuned the threshold value of pHash to have the following two prop-

erties: (i) the threshold value should avoid false negatives as much

as possible and (ii) the threshold value may allow false positives

to some extent. This is because R2Z2’s regression oracle is able to

cater false positive issues (as we will describe at §4.3), so we de-

signed the change detection phase to focus on not missing potential

bugs if possible. Using initial testcases, we obtained the empirically-

tuned threshold value 140 while considering the aforementioned

two properties.

4.2 Bisect Analysis

The bisect analysis locates the culprit commit, B★, responsible for

the rendering difference of htmlCandBug. This is important because

the change detector uses major release versions of a web browser,

where many code commits are taken place in between. For exam-

ple, there are approximately 14,500 commits between Chrome v91

and Chrome v92. Thus, the bisect analysis pinpoints the culprit

commit from a wide range of commits, allowing R2Z2 to avoid any

unintentional side-effects from unrelated commits in the follow-up

analyses.

In order to efficiently identify the culprit commit, a binary search

is performed over the linear sequence of commits. It is possible that

multiple commits are responsible for the difference, but the current

design of R2Z2 assumes that the latest commit from those is the

culprit commit. This is following the common practice exercised by

browser development teams for engineering efficiency, i.e., the later

commit likely shadows the previous commit. The culprit commit

will be then used by the bug regression oracle (§4.3), to filter out

false positives, and the rendering pipeline analysis (§4.4), to avoid

unrelated differences.

Workflow of Bisect Analysis. The workflow of bisect analysis

is as follows: 1) Given two versions of browsers, A and B, R2Z2

computes pHash values of html, PA and PB; 2) R2Z2 picks a version

between A and B, say M, and then computes PM; 3) R2Z2 computes

|PM − PB | . If |PM − PB | is larger than Thresh , R2Z2 will search the half

between M and B. If |PM − PB | is zero (i.e., the PM is the same as PB),

it will search the other half, between A and M. 4) R2Z2 recursively

searches through the region—i.e., it returns to step 2 and keeps

continuing until the two version of browsers A and B are adjacent.

5) If A and B are adjacent, the pre-culprit commit, A★, is set to A. The

culprit commit, B★, is set to B.

4.3 Regression Oracle

R2Z2 develops a pseudo bug oracle, called regression oracle, to han-

dle the challenges in identifying rendering bugs (§3.1). Specifically,

given htmlCandBug (§4.1) as well as the bisected browser version

B★ ≠ R B★ = R

A★ ≠ R Not a Bug (Case 1) Not a Bug (Case 2)

A★ = R Bug (Case 3) Infeasible (A★ ≠ B★)

(a) Interoperability oracle.

A★ B★ R Decision

Fail Fail - Not a Bug (Infeasible, Case 1)

Fail Pass Fail Not a Bug (Case 2)

Fail Pass Pass Bug (Case 3)

Pass - - Not a Bug (Infeasible, Case 4)

(b) Non-feature-update oracle.

Figure 7: Regression oracle decision table.

information (§4.2), the regression oracle aims to filter out false

positive issues in detecting rendering bugs. The regression oracle

operates with two chained sub-oracles, the interoperability ora-

cle (§4.3.1) and the non-feature update oracle (§4.3.2).

4.3.1 Interoperability Oracle. The interoperability oracle is based

on the following assumption:

Assumption: Interoperable rendering is correct. If two

independently-implemented browsers (e.g., Chrome and Fire-

fox) generate the same rendered result from the same input, it

is likely that both produce the correct rendering.

This assumption is based on the observation that browsers are

independently implemented to follow the same HTML/CSS stan-

dards. Let us suppose two different browsers render a given html

the same, then both browsers are either correct or incorrect. Of

these two possible outcomes, it is unlikely that both browsers are

incorrect—for this to be the case, both would need to have indepen-

dently implemented the same bug. Furthermore, if two browsers do

contain the same bug, it is possible that many web developers are

already aware of the bug and thus develope their websites depend-

ing on the bug, making the buggy behavior a de facto, empirical

standard. Therefore, we assume that the interoperable behavior

is likely implicating that both browsers produce a correct render-

ing behavior. Running additional browsers (e.g., Chrome, Firefox,

Internet Explorer, Opera) can further strengthen this assumption.

It is worth noting that cross-version testing in the change de-

tector (§4.1) does not leverage this interoperability because two

versions of the same browser are not individually implemented and

can have the same bug.

Constructing Interoperability Oracle. R2Z2 constructs the in-

teroperability oracle based on rendering interoperability. Given

htmlCandBug (i.e., an HTML testcase which generates different ren-

dering results), the interoperability oracle determines if it is a true

bug or a false positive. R2Z2 runs a reference browser, denoted as R,

which has an independent implementation from the base browser

used in the previous phases (change detection (§4.1) and bisect

analysis (§4.2)). The current prototype of R2Z2 runs Chrome as the

base browser and Firefox as the reference browser.
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Running the reference browser and two versions of the base

browser with the same htmlCandBug, the interoperability oracle ob-

serves three possible cases as shown in Figure 7a. First, Case 1 repre-

sents the case where both browsers have different rendered results

with R. Since the rendering interoperability cannot be leveraged for

different rendered results, the oracle cannot infer the correctness

of any browsers. Thus, the oracle determines that Case 1 is not a

bug. Case 2 represents the case where A★ has the different rendered

result. In this case, as the rendered results of B★ and R are the same,

we can learn that both B★ and R are correct according to the ren-

dering interoperability. The oracle determines Case 2 is not a bug,

because A★ is an older version of B★ and thus the latest B★ fixed the

bug presented in A★. Case 3 represents the case where only B★ has

a different rendered result. In this case, as the rendered results of

A★ and R are the same, we can infer that both A★ and R are correct

because they are interoperable. Hence the oracle determines that

Case 3 is a bug—B★ is a newer version of A★ so case 3 implies that A★

(and R) correctly rendered the HTML file, and a bug is introduced

in B★.

In summary, the interoperability oracle determines htmlCandBug

is a bug if it falls into Case 3 in Figure 7a, otherwise it is not a bug.

4.3.2 Non-feature-update Oracle. To avoid potential rendering re-

gressions and ensure interoperable behavior, web browser develop-

ers are strongly encouraged to add web-platform-tests (WPT) [26]

for every code commit introducing a new rendering feature. Here,

a feature can refer to something in a new specification, or even a

part of an existing specification. WPT tests are written in a format

that can be run in all browsers and there is continuous integration

testing this. R2Z2 uses the behavior of newly-added WPT tests to

filter out commits where the base browser is implementing a new

feature.

Constructing Non-feature-update Oracle. R2Z2 constructs the

non-feature-update oracle which is capable of determining if a

certain code commit (i.e., B★) introduces a new rendering feature

that is not supported in the reference browser R. If the commit

introduces a new feature, R2Z2 determines that it is not a bug. This

is because, although htmlCandBug triggers rendering changes which

break interoperability, the rendering difference can be due to the

new feature, which should not be considered as a bug. If the commit

does not introduce a new feature, R2Z2 determines it is a bug.

More specifically, the non-feature-update oracle is constructed

as follows. First, the non-feature update oracle checks whether B★

has corresponding WPT tests. If not, it determines that htmlCandBug

is a bug. Next, R2Z2 runs each corresponding WPT test on A★, B★,

and R, where the decision table is summarized in Figure 7b. In this

table, it is assumed that A★ always fails the WPT test while B★

should always pass because that is the original function of the WPT

test. Although it is practically infeasible, it is still possible that this

pre-condition does not hold if the WPT test itself has a correctness

issue (i.e., the WPT testing code has a bug). As R2Z2 cannot learn

any from these cases (i.e., Case 1 and Case 4 in Figure 7b), the

non-feature update oracle determines this as a not-a-bug case so

as to conservatively avoid false positives. For the case that A★ fails,

B★ passes, and R fails (i.e., Case 2), the non-feature update oracle

determines it is not a bug. This is because B★ is the first browser that

Figure 8: Overview of the rendering pipeline analysis.

Figure 9: Final bug report example.

introduces the new feature, so the rendering changes of htmlCandBug

can possibly be due to this new feature update.

However, for the case that A★ fails, B★ passes, and R passes,

the non-feature update oracle determines it is a bug (i.e., Case 3).

This case implies that both B★ and R correctly implemented the

new feature associated with the WPT test, but htmlCandBug is not

relevant to this new feature—B★ and R produced different rendering

results as already tested by the interoperability oracle.

To summarize, the non-feature-update oracle determines the

given htmlCandBug (which passed the interoperability oracle) is a

bug if A★ fails, B★ passes, and R passes the corresponding WPT test

as shown in Case 3. Since this bug is passed by both interoper-

ability oracle and the non-feature update oracle, we term this as

htmlOracleBug which passes the regression oracle.

4.4 Rendering Pipeline Analysis

Once finding htmlOracleBug using the regression oracle, a rendering

pipeline analysis attempts to figure out which rendering stage trig-

gers the bug. To be specific, R2Z2 first opens an htmlOracleBug file

in two versions of the same browser, A★ and B★. Then throughout

the rendering pipeline stages of web browsers (§2.2), R2Z2 per-

forms differential testing using the internal representation of each

pipeline stage. More specifically, R2Z2 performs the following four

differential testing on each rendering stage (Figure 8): 1) DOM test,

2) Style test, 3) Layout test, 4) Paint test. Note that this test runs

four pipeline stages in order. If the test finds a difference, it stops

and reports the current stage. This is because later stages will be

different once a difference is present.
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DOM Test. In DOM test, R2Z2 checks if two versions of the same

browser generate the same DOM tree. To this end, R2Z2 performs a

DOM tree equality check—both should have the same tree structure

and each node should have the same tag and attributes. If any of

these is different, R2Z2 determines there is a DOM bug and gen-

erates a human-readable report showing the DOM tree difference.

More specifically, R2Z2 first opens htmlOracleBug on A★ and B★ ( 1 ).

Then, it obtains a DOM tree from each and traverses the DOM tree

in a depth-first order to compare the tag name (e.g., body and div)

and attributes (e.g., type) of each node ( 2 ).

Style Test. After DOM test, R2Z2 compares the style information

generated from each of the browser (i.e., A★ and B★) through style

tree equality check—nodes in both trees should have the same prop-

erty names and values. In particular, it obtains style information

from the browser after a style stage in the rendering pipeline, and

traverses again the DOM tree in a depth-first order while com-

paring the style information (e..g., font-size: 30px) ( 3 ). R2Z2

determines there is a Style bug if any of tree nodes have different

style information, as in DOM test.

Layout Test. In Layout test, R2Z2 checks if two versions of the

same browser generate the same Layout boxes. To perform the

layout box equality check, each matching box (i.e., a layout box

pointed by the same node in both DOM trees) should have the

same size and location. Since we already checked the equality of

the DOM trees, we traverse both DOM trees in the same order and

compare the geometric properties of the layout boxes pointed by

the same DOM node ( 4 ). R2Z2 determines that any difference in

this stage is a Layout bug.

Paint Test. Finally in Paint test, R2Z2 checks if two browsers

generate the same layers. R2Z2 performs the equality check—both

browsers generate the same number of layers with the same size,

compositing reason, and paint records. To be specific, R2Z2 obtains

the layers using Chrome DevTools [11], and sequentially compares

each layer’s size, compositing reason, and paint records ( 5 ). If any

of these are different, R2Z2 determines it is a Paint bug.

Final Bug Report. At the end of R2Z2’s analysis, R2Z2 generates

a final rendering bug report ( 6 ). We provide the example of the

final bug report in Figure 9. The report includes 1) a raw HTML

code triggering the bug, 2) rendering screenshots of A★ and B★,

3) the bug commit (i.e., B★), and 4) the triaged bug stage as well as

the specific elements having different pipeline results.

5 IMPLEMENTATION

We implemented R2Z2 targeting the Chrome browser. We used

Domato fuzzer [14], Imagehash [19], Selenium [21], and Chrome De-

vTools [11]. Domato fuzzer is a grammar-based DOM fuzzer that uses

the context-free grammars to generate HTML files. We modified

the Domato fuzzer to generate HTML files without the animations.

We implemented the change detector and bisect analysis of R2Z2 by

using 1) Selenium to capture the rendered results from two different

versions of browser, and 2) Imagehash to compute a phash value of

images and determine whether two images are different. We set the

number of hash bits as 4,096 to compute a phash value and Thresh as

140 to determine if the two images are different. In order to imple-

ment the regression oracle, we used Firefox as a reference browser.

We implemented the rendering pipeline analysis by using DOM

Browser setting Test env. 1 Test env. 2

Version A Chrome 84.0.4138.0 Chrome 91.0.4472.0

(Release Date) (May 07, 2020) (Apr 09, 2021)

B Chrome 86.0.4188.0 Chrome 94.0.4585.0

(Jul 01, 2020) (Jul 24, 2021)

R Firefox 82.0 Firefox 93.0a1

(Aug 25, 2020) (Aug 09, 2021)

# of commits b/w A & B 18,091 34,052

Figure 10: Experimental configurations.

APIs and Selenium to compare the results of DOM, style, and layout

between two browsers. We used Chrome DevTools to compare the

layer information such as paint records and compositing reason

between two browsers. In terms of the implementation complexity,

R2Z2 is implemented with 2,000 lines of Python and 100 lines of

JavaScript.

6 EVALUATION

This section evaluates various aspects of R2Z2, particularly focusing

on answering the following research questions:

• RQ 1. How many candidate bugs can the change detector find?

(§6.1)

• RQ 2. Can the bisect analysis (§4.2) accurately identify culprit

commit of candidates? (§6.2)

• RQ 3. Can the regression oracle (§4.3) accurately identify true

regression bugs from the candidates? (§6.3)

• RQ 4. Can the rendering pipeline (§4.4) analysis correctly de-

termine the bug introducing stage? (§6.4)

Experimental Setup. We tested R2Z2 with two sets of different

browser versions, as shown in Figure 10. R2Z2 considers stable

(released) versions as A and the latest development version as B. This

is because an important aspect in this paper is specifically finding

regression bugs. Even though two versions of a browser may have

the same bug, only the later version could have a "regression". In

this respect, it is important to fix regression bugs that are currently

impacting end-users, so we picked the stable version as A. Then we

used the latest development version as the B, which (i) maximizes

the commit window to be searched for and (ii) offers a certain level

of stability. Next, we used the reference browser R with the browser

released at the nearest time as B, because browser developers try

to keep the compatibility between different ones released around

the same time [6]. It is possible that two browsers (i.e., Chrome

and Firefox) may support different features, but we note that this

does not cause false positive issues for R2Z2. This is because the

interoperability oracle identifies the bug only if A★ and R were the

same (Case 3), which implies both browsers support all the features

to run the testcase.

For the first testing environment, we selected Chrome 84.0.4138.0

(i.e., commit position 766,000) as A, Chrome 86.0.4188.0 (i.e. commit

position 784,091) as B, which has 18,091 commits in between. We

used Firefox 82.0 as the reference browser R. For the second, we

selected Chrome 91.0.4472.0 (i.e., commit position 870,763) as A,

Chrome 94.0.4585.0 (i.e., commit position 904,815) as B, which has

34,052 commits in between. We used Firefox 93.0a1 as the reference

browser R. We ran all experiments on a 24-core server running

Ubuntu 18.04 with Intel Xeon(R) Gold 5118 (2.30GHz) processors
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Statistics Test env 1 Test env 2

# of tested html 200K 200K

# of htmlCandBug 6,785 16,205

Elapsed time (h) 2 2.5

Throughput (HTML/s) 27.78 22.22

(a) Change detector.

Statistics Test env 1 Test env 2

# of tested htmlCandBug 6,785 16,205

# of bisected htmlCandBug 6,643 15,986

Elapsed time (h) 4 10

Throughput (HTML/s) 2.17 2.25

(b) Bisect analysis.

Figure 11: Run-time statistics of change detector and bisect

analysis in R2Z2.

and 512GB memory. Then, we leveraged the Domato fuzzer to

generate HTML inputs which are fed into R2Z2 for change detection

and analysis.

6.1 Effectiveness of Change Detection

We counted the number of candidate bugs (i.e., htmlCandBug) that

the change detector identified as shown in Figure 11a. After testing

200K randomly generated HTML files, the change detector in each

test environment found 6,785 and 16,205 htmlCandBug, respectively.

The number of htmlCandBug in the second environment is doubled

from the first, which is due to the large commit gap of the second

test environment.

On average, about 5% of the html files caused rendering differ-

ences between A and B. While 5% can be interpreted as a small

number, it accounts for 6,785 or 16,205 htmlCandBug. These all may

be worth manually analyzing, but it would impose prohibitive engi-

neering costs. This result supports the challenge in identifying the

rendering bugs that we described in §3.1, which also signifies the

importance of handling false positive issues with R2Z2’s regression

oracle.

6.2 Effectiveness of Bisect Analysis

In order to evaluate the effectiveness of bisect analysis, we first

checked whether the bisect analysis properly finds the culprit com-

mit of each candidate and then measured the elapsed time of bisect

analysis. In this experiment, we assumed that all Chrome commit

versions between A and B were pre-built for the bisect analysis,

which are, in practice, already available from the automated build

testing infrastructure. Thus, we did not include such overheads as

it is already part of the browser development chain.

The result of bisect analysis is shown in Figure 11b. In the first

testing environment, 6,643 out of 6,785 htmlCandBug (i.e., 97.9%)

were successfully bisected to culprit commits. It failed to pin-point

the culprit commit of 142 candidates. The result for the second

testing environmentwas similar, with 219 htmlCandBug failing. These

failure cases are mostly due to Chrome failing to render, such as the

browser crashing or hanging. For instance, while Chrome was able

to render htmlCandBug at both A and B, it failed to render at a certain

commit in between. For the failed commit, R2Z2 cannot capture

the rendering result, so R2Z2 terminates the bisect analysis. While

failing to render limits the effectiveness of R2Z2’s bisect analysis,

this is rare and we believe addressing this issue is an orthogonal

research problem [5]. In terms of the analysis time, the elapsed time

was about 4 and 10 hours, for each testing environment, respectively.

Translating these results into the throughput, R2Z2 processed about

2.21 htmlCandBug files per second, which we believe is reasonably

fast enough to be used in the production development chain.

With respect to the correctness of the bisect analysis, R2Z2 was

able to correctly pin-point the culprit commit. Specifically, as shown

in Figure 12, all culprit commits of 13 htmlTrueBug (which R2Z2 found

in §6.3) were confirmed to be correct by Chrome developers (i.e., the

accuracy of the bisect analysis is 100%). Considering the fact that

the bisect analysis is manually performed by Chrome developers,

we argue that R2Z2’s automation can significantly improve the

efficiency of the bug triage and debug processes.

6.3 Effectiveness of Regression Oracle

This section evaluates the effectiveness of the regression oracle.

We first use an interoperability oracle and then use non-feature-

update oracle to find htmlOracleBug. Then, for deduplication, we

classified the htmlOracleBug by their culprit commit and picked one

htmlOracleBug from each culprit commit. Specifically, R2Z2 detected

27/247 htmlOracleBug from 6,643/15,986 candidates by using the inter-

operability oracle in the first/second test environments, respectively.

Then 27/247 htmlOracleBug were bisected into 10/11 unique culprit

commits, respectively. From 21 unique culprit commits, we picked

an htmlOracleBug from each unique culprit commit. The number of

true/false bugs is 14/7 (i.e., the true positive rate is 66.7%). Among

21 commits, the culprit commits of eight true and five false bugs

have web-platform-tests, respectively. Non-feature-update oracle

filtered out four false positives and one true bug. It failed to filter

out two false positives as they do not have web-platform-tests. To

sum up, given 22,629 htmlCandBug, the regression oracle identified

16 htmlOracleBug. After reporting these, 13 bugs were confirmed as

true regression bugs, and three htmlOracleBug were false positives

of R2Z2 (i.e., the true positive rate is 81.25%, and the false positive

rate is 18.75%).

New Regression Bugs. Through the evaluation, R2Z2 identified

13 true regression bugs. Out of these, 11 regression bugs were newly

identified by R2Z2 and two were previously (and independently)

identified by other users and researchers. The list of new rendering

regression bugs is shown in Figure 12. After reporting, six of these

regression bugs were fixed by developers and thus R2Z2 prevented

such regression bugs from harming users, demonstrating R2Z2’s

impact on spotting regression bugs.

False Positives. Two false positive cases were due to the fact

that R2Z2 was not able to use the non-feature update oracle—

i.e., browser developers did not include WPT tests for these two,

so the non-feature update oracle simply determined they were

htmlOracleBug. While these false positive issues may seem to be the

limitation of R2Z2, the testcases were useful to browser developers.

Specifically, after reporting these bugs, browser developers men-

tioned that htmlOracleBug in fact tests the new features that were
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updated by B★ [24]. Therefore, htmlOracleBug can be used to add

missing testcases.

6.4 Correctness of Rendering Pipeline Analysis

In order to evaluate the correctness of the rendering pipeline anal-

ysis, we first obtained the ground truth, a true culprit stage for all

htmlTrueBug. As we reported htmlTrueBug, the browser developers

performed the manual analysis and left the annotation on which

pipeline stage is responsible for the bug. We were able to obtain

the ground-truth for 12 htmlTrueBug (out of total 13 htmlTrueBug that

R2Z2 detected). For the one remaining unlabeled one, browser de-

velopers failed to pinpoint a specific stage although they confirmed

the bug.

According to our evaluation, the rendering pipeline analysis

correctly spotted all of 12 htmlTrueBug (i.e., the accuracy is 100%),

showing the effectiveness of this analysis. Because no htmlTrueBug

were in DOM and Style, we prepared an extra evaluation with ex-

isting DOM and style bugs which are reported by other Chrome

contributors. Searching Chrome bug tracker [1], we selected three

DOM bugs, which are reproduced in older versions than our eval-

uation environment, because there was no recent DOM bug. We

also selected four Style bugs, which are valid in the version range

of our evaluation environment. The result is that R2Z2 correctly

pin-pointed all DOM bugs. However, in the case of Style bugs, it

correctly pin-pointed three out of four Style bugs. As shown in this

evaluation, R2Z2 was able to correctly spot a culprit pipeline stage

for all tested bugs except one Style bug, demonstrating its strong

potential to significantly save manual engineering work performed

by browser developers. Finally, we conducted a case study on the

incorrectly pin-pointed Style bug to clarify the flaw of pipeline

analysis as described below.

Case Study: A Failure Case of Pipeline Analysis. In Style

test, the pipeline analysis failed to find the culprit stage of the

bug (Chrome issue #1154537 [22]). This is because R2Z2 relies on

getComputedStyle DOM API to retrieve the style information, but

for some cases it does not return the complete internal information

used in the style stage. For these cases, the complete internal infor-

mation can only be retrieved through inspecting the raw memory

while handling virtual address differences between two browser

instances. While this clearly is a limitation of R2Z2, we leave this

as our future work as it only occurred in one case out of 19.

7 DISCUSSION

This section discusses future research directions of R2Z2, particu-

larly stating how R2Z2 can further be utilized for other use-cases.

DetectingRegressions inOtherWebBrowsers. R2Z2 currently

supports Chrome but does not support other web browsers (e.g.,

Safari, Firefox, and Edge). Since the design of R2Z2 is generic, these

can be supported by R2Z2 with moderate implementation effort. In

particular, R2Z2’s run script needs to be modified to spawn these

other browser instances. The bisect analysis requires including

a browser-specific build script for each version. The rendering

pipeline analysis can be implemented in a similar way by using

each browser’s development APIs to collect intermediate rendering

information.

Issue Culprit Culprit
Correct Incorrect Confirmed Fixed

ID Commit Stage

#1121082 775116 (�) Paint (�) � �

#1164652 779663 (�) Layout (�) �

#1226558 780992 (�) Layout (�) � �

#1231397 770064 (�) Paint (�) �

#1237352 885372 (�) Paint (�) � �

#1240854 885961 (�) Paint (�) �

#1240856 890916 (�) Layout (�) � �

#1241345 889344 (�) Undecided �

#1241356 888805 (�) Layout (�) � �

#1241436 885635 (�) Paint (�) � �

#1242851 887727 (�) Layout (�) �

#1245637* 784040 (�) Paint (�) � �

#1245639* 766419 (�) Paint (�) � �

Figure 12: The list of 13 htmlTrueBug found byR2Z2 in Chrome.

11 bugs were newly identified by R2Z2, and two were in-

dependently identified by other contributors (annotated

with *).

Using Regression Oracle for Other Programs. While this pa-

per leverages the regression oracle for rendering regression bugs, it

can be adopted to find regressions in other programs in the future.

There are many programs in which multiple independent programs

implement the same standards (e.g., PDF viewers, SVG engines,

Java virtual machines, or SSL/TLS servers or clients). Since these

programs have the same challenge in identifying regression issues

as browser rendering (i.e., complex and unclear standard specifica-

tions), R2Z2’s regression oracle can be utilized to correctly identify

regressions while avoiding false positives.

8 RELATEDWORK

Browser Layout Testing. Previous work has proposed tools to

help web-page developers discover cross-browser incompatibili-

ties in web applications [33, 34, 43]. They automatically identified

cross-browser incompatibilities in web applications by detecting

rendering differences of two different browsers. Compared to this

previous work, the focus of R2Z2 is in identifying rendering bugs

in web browsers rather than web applications. Moreover, these do
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not employ the bug oracle, so they suffer from false positive issues.

There is another work that found HTML presentation failures in

web pages [41, 42], which requires manually-developed oracles by

domain experts. Compared to these, R2Z2’s oracle does not involve

the manual processes.

Browser LayoutVerification. There are several works that partly

formalized the browser layout algorithm [44, 47, 48]. [48] proposes

visual logic to express accessibility guideline and leverages finitiza-

tion reductions to properly formalize the fragment of the browser

layout algorithm. Troika [49] proposes modular layout proofs for

verification of web page layout. As described in §3.1, converting

HTML and CSS specifications to formalized rules is labor-intensive

and error-prone, requiring expert domain knowledge of specifica-

tions as well as browser implementation. Compared to these, R2Z2

is able to perform the automated rendering bug detection without

domain expert’s knowledge.

Fuzzing to find Semantic Bugs. NEZHA [51] exploits the behav-

ioral asymmetries between multiple test programs to find semantic

bugs. DeepXplore [50] and DLFuzz [37] guide Deep Learning (DL)

systems to expose incorrect behaviors using neuron coverage. Some

studies employ differential testing to discover semantic bugs in Java

Virtual Machine (JVM) implementations [28, 31, 32]. GLFuzz [36]

leverages metamorphic testing to find shader compiler bugs. It

inserts dead code into the graphics shading languages, such as

OpenGL, and checks whether the original code and variant code

are semantically equivalent based on their rendered results. GLFuzz

determines that the variant code is a bug case when the rendered

results are significantly different.

DOM Fuzzing. Many DOM fuzzers [7, 12, 14, 15, 25, 55] are pro-

posed to find the memory-related bugs from the web browsers. For

instance, cross fuzz [7] dynamically generates the sequences of

DOM APIs to bind multiple HTML documents for stress-testing the

garbage collection mechanisms of web browsers. In this way, it iden-

tified about one hundred memory-related bugs from web browsers

(e.g., Internet Explorer, Firefox, and Opera). DOMFuzz [15] uses

DOM API calls to test some parts of browser engines (e.g. layout).

Wadi [25], Domato [14] and Dharma [12] are the generation-based

DOM fuzzers, which generate HTML inputs based on their HTML,

CSS, and JavaScript grammars. FreeDOM [55] leverages a context-

aware intermediate representation to generate semantically-valid

HTML documents.

9 CONCLUSION

This paper proposed R2Z2, a differential fuzz testing technique

to find rendering regressions in web browsers. R2Z2 features two

unique techniques to find and analyze rendering bugs. First, it fea-

tures a regression oracle along with the rendering change detection

so as to detect regression bugs while avoiding the false positives.

Second, it features the bisect analysis and the rendering pipeline

analysis, allowing R2Z2 to spot the culprit commit and pipeline

stage, which are responsible for the bug. With the prototype imple-

mentation for the Chrome browser, it identified 11 new rendering

bugs in Chrome, all of which were confirmed by Chrome develop-

ers.

10 DATA AVAILABILITY

We disclosed our data used in this paper at https://doi.org/10.6084/

m9.figshare.16569561.v1.
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